Филиал Государственного бюджетного профессионального образовательного учреждения Республики Хакасия «Черногорский горно-строительный техникум»

ОП 04. Геология

Методические указания и контрольные задания для студентов-заочников

по профессии среднего профессионального образования 21.02.17 «Подземная разработка месторождений подземных ископаемых»

квалификация: Горный техник-технолог

Методические указания составлены в соответствии с требованиями Федерального государственного образовательного стандарта среднего профессионального образования по специальностям 21.02.17 Подземная разработка месторождений полезных ископаемых.

Методические указания по дисциплине «Геология» содержат рекомендации по выполнению контрольной работы и контрольных заданий, предназначенные для студентов заочной формы обучения.

Разработчик:

Рыжкова Н.И преподаватель спец дисциплин,

Ф.И.О., ученая степень, звание, должность,

Введение

Методические указания и контрольные задания для студентов - заочников по учебной дисциплине «Геология» составлены на основе рабочей программы в соответствии с ФГОС СПО по специальностям 21.02.17 «Подземная разработка месторождений полезных ископаемых».

Учебная дисциплина «Геология» входит в общепрофессиональный цикл дисциплин.

Студент, изучающий дисциплину «Геология», должен научиться определять наиболее распространенные минералы и горные породы и объяснять их генезис; распознавать простые тектонические структуры, геологические тела и формы рельефа; пользоваться горным компасом; изображать морфологические типы складок и виды дизьюнктивов; анализировать несложные геологические карты, строить к ним геологические разрезы, составлять стратиграфические колонки

Количество часов на освоение программы учебной дисциплины составляет 128 часов, учебным планом для студентов заочной формы обучения предусмотрена одна контрольная работа. Прежде чем приступить к выполнению контрольной работы, необходимо ознакомиться с содержанием тематического плана учебной дисциплины и изучить материал по темам разделов, пользуясь учебной литературой.

Раздел 1. Основы геологии

1.1 Общая характеристика Земли и ее строение

Содержание учебной дисциплины «Геология», её место и роль в системе получаемых знаний по специальности, связь с другими учебными дисциплинами. Разделы геологии. Роль геологии в развитии нефтяной и газовой промышленности страны. Научно-технические проблемы и перспективы развития геологоразведочных работ на нефть и газ.

Земля и Вселенная. Общие сведения о Солнечной системе. Краткая характеристика Солнца, планет и малых тел Солнечной системы. Общие сведения о галактиках. Строение Вселенной. Понятия о расширении Вселенной и её бесконечности. Методы изучения Вселенной

Общая характеристика Земли. Краткие сведения о форме и размерах Земли. Понятие о сжатии Земли, сфероиде, геоиде. Понятие о массе и плотности Земли. Изменение плотности с глубиной. Гравитационное поле Земли. Понятие о магнетизме Земли. Магнитные полюсы. Магнитные меридианы. Магнитное склонение и магнитное наклонение. Магнитные аномалии. Теплота Земли. Изменение теплоты с глубиной. Гелиотермическая зона, пояс постоянной температуры, зона геотермии. Геотермический градиент и геотермическая ступень, их зависимость от различных факторов. Вероятная температура глубинных недр Земли.

Строение Земли. Внешние оболочки Земли. Атмосфера, её деление на зоны: ионосферу, стратосферу и тропосферу. Изменение химического состава и температуры в атмосфере. Гидросфера, её площадь и средняя глубина. Физикохимическая характеристика морской воды. Биосфера, её распространение и значение. Средства и методы изучения глубинного строения Земли. Решающая роль геофизических методов. Сверхглубокое бурение. Внутренние оболочки и ядро Земли. Земная кора. Континентальный и океанический типы земной коры. Осадочный, гранитный и базальтовый слои. Мантия Земли, ее химический состав и плотность. Ядро Земли, его химический состав и плотность.

Методические указания

Роль геологических знаний огромна. Например, бурение скважины осуществляется по геолого-техническому наряду, в котором содержится необходимая геологическая информация, определяющая условия проводки скважины. Интервалы возможных осложнений, конструкция скважины, виды буровых растворов зависят от геологических особенностей разреза (литологического состава, крепости,

Научное и практическое значение геологии заключается в том, что люди с ее помощью познают окружающий мир, она является теоретической основой для поисков, разведки и разработки полезных ископаемых, используется при строительных работах, в здравоохранении, сельском хозяйстве, а также для решения вопросов охраны недр и окружающей среды.

Если раньше открытия месторождений часто носили случайный характер, то в настоящее время, когда выявлены основные закономерности развития земной коры, поиски

месторождений поставлены на научную основу.

При изучении вопроса «Земля и Вселенная» необходимо уяснить строение Солнечной системы, ее происхождение, и почему важно знать какое положение планета Земля занимает в космическом пространстве. Также желательно ознакомиться с современными методами изучения Вселенной и их результатами.

При изучении вопроса «Общая характеристика Земли» следует обратить внимание на форму Земли. Форма Земли соответствует эллипсоиду вращения сжата не только на полюсах, но также немного и по экватору, т.е. является не двухосным, а трехосным эллипсоидом вращения. Но наиболее близкой к современной фигуре Земли будет фигура, по отношению к поверхности которой сила тяжести повсеместно направлена перпендикулярно. Она названа геоидом, что дословно означает «землеподобный». Также необходимо знать характеристики гравитационного, магнитного, теплового поля Земли и их практическое применение человеком. Гравиразведка и магниторазведка - геофизические методы изучения строения земной коры. Особое внимание требуется уделить таким понятиям как геотермический градиент и геотермическая ступень, так как при бурении скважин и при эксплуатации оборудования в ней, эти понятия крайне важны.

При изучении строения Земли необходимо изучить внешние и внутренние оболочки Земли. В результате изучения землетрясений было установлено, что на определенных глубинах происходят скачкообразные изменения скорости распространения продольных и поперечных сейсмических волн. Эти явления связаны с резким изменением плотности вещества Земли и его состава. Таким образом, Земля неоднородна и образуют ее несколько оболочек с разными свойствами - земная кора, мантия, ядро. Рассмотрите строение каждой геосферы и зарисуйте рисунки «Строение Земли», «Строение земной коры».

Литература [1], стр.1-23

Вопросы для самоконтроля

- 1. Какие небесные тела входят в Солнечную систему? Что представляет собой Солнце?
- 2. Как образовалась Солнечная система?
- 3. Приведите сравнительную характеристику внешних планет (планет земной группы) и внутренних планет (планет-гигантов).
 - 4. С какими геометрическими формами сопоставима форма Земли? Что такое геоид?
 - 5. Чем объясняются аномалии силы тяжести?
 - 6. Что понимают под магнитными аномалиями и чем они вызваны?
 - 7. Что такое магнитное склонение?
- 8. Какие факторы определяют тепловой режим Земли? Как изменяется температура недр Земли с глубиной? (Укажите глубину каждой зоны).
 - 9. Что понимают под геотермическим градиентом и геотермической ступенью? Назовите

их средние значения. Как они связаны между собой?

- 10. Опишите внешние и внутренние оболочки Земли. На основании, каких исследований установлены границы между внутренними геосферами (земной корой, мантией и ядром)? На каких глубинах проходят их границы?
 - 11. Что называется земной корой? Какой ее химический состав?
 - 12. В чем различие между континентальной земной корой и океанической земной корой?

1.2.Геологические процессы

Общие понятия о геологических процессах. Экзогенные процессы. Выветривание горных пород. Физическое и химическое выветривание. Денудация. Геологическая деятельность ветра: эоловые формы рельефа и отложения. Геологическая деятельность поверхностных текучих вод. Плоскостной смыв, делювий. Линейный смыв. Эрозия. Донная и боковая эрозия. Аллювий. Образование пролювия. Геологическая деятельность подземных вод. Почвенные, грунтовые и пластовые воды. Разрушительная деятельность подземных вод. Карсты, суффозии, оползни. Созидательная деятельность подземных вод. Сталактиты и сталагмиты. Образование месторождений полезных ископаемых при воздействии подземных вод. Геологическая деятельность ледников. Экзарация. Образование морен. Геологическая деятельность морей и океанов. Распределение зон морского дна. Разрушительная деятельность моря. Созидательная деятельность моря. Осадконакопление. Диагенез осадков.

Эндогенные геологические процессы. Классификация и свойства тектонических движений земной коры. Колебательные движения, трансгрессия и регрессия моря. Горизонтальные движения. Гипотеза тектоники плит. Представление о строении океанического дна. От гипотезы тектоники плит к новой глобальной тектонике. Движение литосферных плит и горообразование.

Магматические процессы. Интрузивный магматизм. Эффузивный магматизм. Продукты извержения вулканов. Вулканические зоны. Понятие о метаморфизме горных пород. Типы метаморфизма. Землетрясения.

Тектонические, вулканические и обвальные землетрясения. Сейсмические волны. Интенсивность землетрясений.

Геологическая деятельность человека и техногенное воздействие на природную среду хозяйственными объектами и системами в процессе природопользования или сбрасывания в неё отходов.

Методические указания

В данной теме рассматриваются геологические процессы, происходящие на поверхности Земли и в ее недрах. Их разделяют на экзогенные (внешние) и эндогенные (внутренние). При изучении этой темы важно уяснить, что развитие земной коры происходило и происходит в непрерывной борьбе внешних и внутренних сил, горные породы образуются и разрушаются,

горы воздымаются и сглаживаются.

Экзогенные процессы приводят к выравниванию форм рельефа местности, созданных как эндогенными, так и экзогенными процессами, происходившими ранее. Под влиянием колебаний температур, под действием ветра, воды, морского прибоя, ледников и т. п. происходит разрушение горных пород и перенос их в пониженные участки земной поверхности, главным образом в моря и океаны. Из осадков, накопленных в морях и океанах, образуются осадочные горные породы, в которых и залегают нефть и газ.

В результате эндогенных процессов происходят землетрясения и вулканические извержения, возникают разломы в земной коре; сминаются в складки мощные слои земной коры, образуются горные хребты и впадины. При охлаждении и застывании магмы, поступающей из недр Земли, образуются магматические горные породы. К эндогенным процессам следует отнести и явления метаморфизма горных пород, происходящие вне зоны выветривания земной коры под влиянием давления, температуры и химически активных веществ и вызывающие коренные изменения горных пород.

С течением времени эндогенные процессы приводят к изменениям границ водных бассейнов, в связи с чем, часть осадочных пород оказывается на поверхности Земли, где она подвергается действию экзогенных процессов. В результате начинается новый цикл, соответствующий новой обстановке.

Человек совершает геологическую деятельность. Особенно она проявляется, когда производится добыча полезных ископаемых открытым способом. Окружающая среда не только изменяется, но и загрязняется. Нефтяная промышленность также наносит больший вред окружающей среде. Поэтому необходимо проводить природоохранные мероприятия.

Литература [1], стр.24-63

Вопросы для самоконтроля

- 1. Что понимают под экзогенными и эндогенными геологическими процессами? Приведите примеры.
- 2. Что понимают под выветриванием горных пород? Расскажите о видах выветривания. Что представляют собой продукты выветривания?
 - 3. В чем заключается геологическая деятельность ветра?
 - 4. В чем заключается геологическая деятельность русловых потоков (рек и ручьев)?
 - 5. Что такое сели? Чем отличается пролювий от аллювия?
 - 6. Что такое карстовые процессы? Каковы их результаты?
 - 7. Зарисуйте строение морского дна и расскажите о видах осадков в разных участках моря.
 - 8. Какие осадки накапливаются в озерах и лагунах?
 - 9. В чем заключается геологическая деятельность ледников?
 - 10. Как образуются рифы?

- 11. Что понимают под диагенезом осадков? Приведите примеры.
- 12. Как подразделяются тектонические движения? Приведите их характеристику.
- 13. Что такое трансгрессия и регрессия? Нарисуйте серии осадков для них, приведите пояснения к рисункам.
 - 14. Что такое магма, как она образуется?
 - 15. Что понимают под интрузивными и эффузивными процессами?
 - 16. Что такое интрузия? Какие формы интрузий вы знаете? Приведите рисунки.
- 17. Какие типы вулканов вы знаете, расскажите о них. Нарисуйте и расскажите о строении вулкана центрального типа. Расскажите о продуктах извержения вулканов
 - 18. Какие вулканические зоны вы знаете?
- 19. Какие типы землетрясений вы знаете? Что понимают под эпицентром и гипоцентром землетрясения? Назовите виды упругих волн. От чего зависит их скорость распространения?
- 20. Что называют метаморфизмом горных пород? Приведите краткую характеристику основных типов метаморфизма.

1.3. Основы минералогии и петрографии. Полезные ископаемые

Основы минералогии. Понятие о минералах. Минералы твердые, жидкие, газообразные. Кристаллические и аморфные минералы. Агрегатные состояния минералов. Физические свойства минералов - цвет, прозрачность, блеск, твердость, спайность, излом, относительная плотность.

Классификация минералов по химическому составу. Самородные элементы. Сульфиды. Оксиды. Карбонаты. Силикаты. Сульфаты. Фосфаты. Природные органические соединения. Породообразующие минералы.

Основы петрографии. Понятие о горных породах. Структура и текстура горных пород. Магматические породы. Глубинные и излившиеся горные породы. Химическая классификация магматических пород. Кислые, средние, основные и ультраосновные породы.

Осадочные породы, их классификация. Обломочные породы. Структура и текстура обломочных пород. Терригенные и карбонатные обломочные породы. Классификация терригенных пород. Хемогенные породы. Структура и текстура хемогенных пород. Основные хемогенные породы. Органогенные породы. Структура и текстура органогенных пород.

Основные органогенные породы. Понятие о каустобиолитах. Метаморфические породы. Структура и текстура метаморфических пород.

Полезные ископаемые. Полезные ископаемые, как основная часть производительных сил государства, значение их в экономике страны. Генетическая и промышленная классификация месторождений полезных ископаемых.

Методические указания

Земная кора состоит из горных пород, а горные породы из минералов. Также в земной

коре залегают полезные ископаемые, поэтому изучение этих вопросов имеет большое значение.

К основным физическим свойствам минералов относят кристаллическую форму, цвет в образце и цвет тонкого порошка (черты), побежалость, прозрачность, блеск, твердость, спайность, излом, плотность и др. На основании этих свойств можно определить большинство минералов, не прибегая к химическому анализу. Шкалу твердости минералов нужно запомнить.

Наряду с перечисленными общими для всех минералов свойствами, ряд минералов обладает характерными только для них физическими свойствами, являющимися, иногда, их основными диагностическими признаками. К таким свойствам следует отнести - прозрачность минералов, их ковкость, плавкость, магнитные свойства (этим свойством обладает магнетит; реакция с кислотами (кальцит вскипает при взаимодействии с соляной кислотой НС1 с выделением углекислого газа в виде пузырьков), соленый вкус (галит) и т.п.

Минералы, определяющие основные свойства горных пород, называются породообразующими. К ним относят полевые шпаты, кварц, амфиболы, пироксены, слюды, карбонаты, сульфаты и др.

Горные породы образуются в результате геологических процессов, происходящих в недрах земной коры или на ее поверхности. В зависимости от происхождения они могут быть магматическими, осадочными и метаморфическими. Наряду с другими признаками горные породы характеризуются структурой и текстурой.

При изучении магматических горных пород необходимо изучить их классификацию по происхождению, по химическому составу, вспомнить формы залегания, знать структуру и текстуру интрузивных и эффузивных пород. При изучении осадочных горных пород необходимо помнить, что к ним приурочены основные запасы нефти и газа. Поэтому важно знать их классификацию по происхождению, по химическому составу, знать структуру и текстуру пород.

Формирование осадочных пород обусловлено экзогенными процессами. Среди осадочных пород выделяют обломочные, хемогенные и органогенные породы. Среди обломочных пород различают терригенные и карбонатные. Терригенные породы — песок, песчаник, алеврит, алевролит, глина. В упрощенной форме их можно рассматривать как механические. Карбонатные породы сложены в основном кластическими известняками, состоящими из окатанных карбонатных зерен разного размера. Проницаемые и пористые разности тех и других пород служат коллекторами нефти и газа. Основные хемогенные породы, с коллекторами которых связано более половины мировых выявленных запасов нефти, представлены известняками и доломитами. К органогенным породам относят известняки органогенного происхождения. Они образуют известковые напластования, типичными представителями которых являются биогермы (рифы) и биостромы. С известняками рифовых массивов могут быть связаны залежи нефти и газа. Разновидность органогенных известняков —

мел. Вместе с битумами угли представляют собой минеральные образования органического происхождения, способные гореть и объединяемые под общим названием — каустобиолиты.

Метаморфические горные породы образуются в результате воздействия процессов метаморфизма на магматические и осадочные породы. Для метаморфических пород типична сланцеватая текстура.

На практических занятиях необходимо изучить образцы наиболее встречающихся и важных минералов и горных пород.

Многие минералы и горные породы являются полезными ископаемыми. В России открыто более 20 тыс. месторождений полезных ископаемых. В недрах земли выявлены и разведаны многочисленные месторождения нефти, природного газа, каменного угля, руд черных, цветных, редких и благородных металлов, редкоземельных элементов, горнохимического нерудного технического сырья, драгоценных и поделочных камней и минеральных материалов. Необходимо кратко ознакомиться с представителями различных полезных ископаемых.

Литература [1], стр.65-87

Электронные ресурсы:

1.http://www.catalogmineralov.ru

Вопросы для самоконтроля

- 1. Дайте понятие о минералах. Приведите примеры.
- 2. На чем она основана классификация минералов? Приведите классы минералов.
- 3. Что такое горная порода? Приведите примеры.
- 4. Классификация горных пород по происхождению. Приведите примеры горных пород.
- 5. Как подразделяются магматические горные породы по происхождению? Приведите примеры. Как их отличить по вне<u>шн</u>им признакам?
 - 6. Как образуются метаморфические горные породы, приведите примеры?
- 7. Как подразделяются осадочные горные породы по происхождению? Приведите примеры.
- 8. Что представляют собой песчаники и пески, алевриты и алевролиты, глины и аргиллиты (происхождение, отличительная особенность)?
- 9. Что представляют собой известняк, гипс, ангидрит, каменная соль (состав, происхождение, отличительная особенность)?
- 10. Какие породы относятся к каустобиолитам? В чем их характерная особенность? Приведите примеры.
- 11. Как классифицируются полезные ископаемые, приведите примеры полезных ископаемых.

1.4.Основы исторической, структурной геологии и геоморфологии

Основы исторической геологии. Основные задачи исторической геологии. Методы исторической геологии. Понятие о стратиграфическом, петрографическом, палеонтологическом и палеогеографическом методах изучения геологического прошлого Земли.

Относительная геохронология. Деление истории Земли на эры, периоды, эпохи, века. Стратиграфические и геохронологические подразделения геохронологической шкалы. Методы определения возраста Земли и горных пород. Развитие тектонических движений и органического мира Земли. Общие закономерности строения и истории развития земной коры и размещения в ней полезных ископаемых.

Основы геоморфологии. Генетические типы, возраст и соотношение с формами рельефа четвертичных отложений; методы геоморфологических исследований и методы изучения стратиграфического расчленения.

Основы структурной геологии. Основные понятия структурной геологии. Пласты, складки, разрывные нарушения. Понятие о пликативных и дизьюнктивных нарушениях Элементы залегания наклонного слоя. Согласное и несогласное залегание слоев. Геологическая карта. Структурная карта. Литолого-стратиграфическая колонка. Геологический разрез. Основные тектонические структуры литосферы.

Основы фациального анализа. Содержание и назначение учения о фациях. Общие принципы генетического анализа. Практическое значение учения о фациях. Методы реконструкции общих палеогеографических условий осадконакопления. Картирование фаций и построение фациальных карт. Палеогеографическая интерпретация карт фаций. Связь фаций с тектоникой.

Методические указания

В течение многих миллионов лет на поверхности нашей планеты проходил ряд геологических процессов: на месте древних морей возникали горы, ранее созданные горные хребты разрушались и погружались в пучину вод, затоплявших сушу. На дне морей и океанов слой за слоем накапливались пласты осадочных горных пород. Мощные вулканические извержения и излияния лавы затухали. Менялся климат отдельных частей земного шара. Простейшие водной организмы, возникшие В среде, уступали место более высокоорганизованным. В результате эволюции органического мира одни растительные и животные организмы сменялись другими.

Изучая последовательность образования горных пород, слагающих верхние части земной коры, а также остатки флоры и фауны далеких времен, ученые восстанавливают историю развития земной коры и жизни на ней.

Таким образом, историческая геология изучает историю и закономерности развития Земли с момента образования земной коры.

Историческая геология опирается на данные палеонтологии, стратиграфии, петрографии, минералогии, литологии, тектоники и других геологических дисциплин.

Стратиграфия - наука о последовательности залегания пластов земной коры. Палеогеография изучает условия, в которых происходило образование тех или иных пород, например, на суше или в море, в жарком или холодном климате и т.д. Палеонтология - наука о древних вымерших организмах. По руководящим ископаемым остаткам определяют возраст горных пород. Тектоника - наука о строении и развитии земной коры. Все эти понятия являются основополагающими в геологии и поэтому их нужно изучить и запомнить.

Понятие о фациях, также заслуживает внимания. Фация - это комплекс горных пород, образованный в определенных физико -географических условиях. По месту образования выделяют три основные группы фаций: морские, лагунные и континентальные. Морские фации подразделяются на прибрежные, мелководные, средних глубин и глубоководные. Среди лагунных выделяют фации опресненных бассейнов, заолоненных бассейнов, дельт и эстуариев. Континентальные фации по условиям осадконакопления подразделяют на речные, озерноболотные, пустынные, предгорий, ледниковые, межгорных впадин и кору выветривания.

Проблема времени в геологии занимает особое место. События, протекавшие на Земле в течение многих сотен миллионов лет не соизмеримы с жизнью человека. Поэтому в основу геологического подразделения времени положено развитие органического мира на Земле. Наука, занимающаяся геологическим летосчислением, называется геохронологией.

В геологии приняты два летоисчисления - относительное и абсолютное, получившие названия относительной и абсолютной геохронологии.

Относительная геохронология пользуется двумя основными методами определения относительного возраста горных пород: палеонтологическим и стратиграфическим.

Определение абсолютного возраста горных пород проводят путем изучения природной радиоактивности минералов. При этом, используется особенность радиоактивных элементов содержащихся в породах, со временем самопроизвольно распадаться с образованием других элементов. Абсолютная геохронология определяет абсолютный возраст горных пород в годах. В основе методов абсолютной геохронологии лежит определение радиоактивных изотопов различных радиоактивных элементов, входящих в состав минералов, слагающих горные породы. Такими радиоактивными элементами является уран, торий, рубидий, калий, рений, углерод и др. Известно, что каждый радиоактивный элемент имеет строго определенный период распада.

Следует изучить геохронологическую шкалу (рисунок 1.1.4), увязывая с развитием органического мира на Земле. Также ее нужно зарисовать в рабочей тетради при конспектировании материала, обращая внимание на индексы, и раскрасить.

Эон эонотема)	Эра (группа)	Период (система)	Эпоха (отдел)	Цвет на карте
Castepososii	Кайнозойская Кz	Четвертичный Q	Голоценовая (соврем.) Q _{IV} Похимечетвертичная (в) Q _{II} Среднечетвертичная (с) Q _I Раннечетвертичная (н) Q,	Серовато- желтый
		Неогеновый N	Плиоценовая (в) N_z Миоценовая (п) N_1	Лимонно- желтый
		Палеогеновый Р	Одигоценовая (в) Р ₃ Эоценовая (с) Р ₂ Палеоценовая (н) Р ₁	Ярко- желтый
	Menosoficsas Mz	Меловой К	Позднемеловая (в) K ₂ Раннемеловая (н) K ₁	Салатно- зеленый
		Юрский Ј	Поданеюрская (в) J ₁ Среднеюрская (с) J ₂ Риппеюрская (и) J ₁	Синевато- голубой
		Триасовый Т	Позднетриосовая (в) Т ₁ Среднетриасовая (с) Т ₂ Ранистриасовая (н) Т ₁	Сиреневый
	Палеозойская Рz	Пермский Р	Покинепермский (в) Р ₃ Раншепермский (н) Р ₄	Оранжево- коричневый
		Каменно- угольный С	Похинекаменноугольная (в) С ₃ Среднекаменноугольная (с) С ₂ Раннекаменноугольная (я) С ₁	Серый
		Девонский D	Подриеденонская (в) D ₁ Среднеденонская (с) D ₂ Раинеденонская (н) D ₁	Кортенневый
		Силурийский S	Позднесилурийская (в) S ₃ Раннесилурийская (н) S ₁	Коричневато зеленый
		Ордовикский О	Позднеордовикский (в) О ₃ Среднеордовикский (с) О ₂ Раппеордовикский (и) О ₁	Темпо- зеленый
		Кембрийский €	Позднекембрийский (в) \in Среднекембрийский (с) \in Раннекембрийский (н) \in	Голубовато- зеленый
Протеро- зой PR		Вендский V Рифейский R		Розовый
Apxeli AR				Малиново- розовый

Рисунок 1.1.4 Геохронологическая (стратиграфическая) шкала

Вопросы структурной геологии имеют чрезвычайно важное значение для представления форм залегания полезных ископаемых.

Осадочная толща земной коры состоит из слоев (пластов) горных пород. Слой (пласт) - это геологическое тело преимущественно однородного состава, ограниченное приблизительно параллельными поверхностями - подошвой и кровлей.

Первичной формой залегания осадочных горных пород являются горизонтальные слои. В результате тектонических движений земной коры они могут быть наклонены, смяты в складки и разорваны, образуя при этом различные структурные формы. Необходимо изучить и зарисовать все формы залегания осадочных горных пород горизонтальное, наклонное, складчатое, разрывные нарушения, также освоить такие понятия как согласное и несогласное залегание слоев.

Основные запасы нефти и газа России сосредоточены в пределах Западно-Сибирской молодой платформы, поэтому вопрос о строении платформ и их возрасте необходимо изучить более тщательно. Платформы - относительно устойчивые участки земной коры. Они возникают на месте геосинклинальных областей горообразованиия, по завершении которого геосинклинали - подвижные пояса земной коры, вымирают. На платформах положительными структурами являются антеклизы, своды, валы и локальные поднятия, отрицательными - синеклизы, впадины, прогибы и другие. Антиклинальные складки И локальные поднятия, осложняющие вышеперечисленные структуры, являются объектами поисковых работ на нефть и газ.

Тектоника литосферных плит сегодня объясняет не только причины землетрясений и вулканизма, но и образование нефти. Ознакомьтесь с вопросом о движении литосферных плит.

Литература [1], стр.88-112

Вопросы для самоконтроля

- 1. Что изучает историческая геология (задачи исторической геологии)?
- 2. Что такое окаменелости? Что такое руководящие ископаемые? Приведите примеры.
- 3. Геохронологическая шкала. Приведите эры геохронологической шкалы. Что положено в основу построения геохронологической шкалы?
- 4. Какие методы абсолютный и относительной геохронологии вы знаете? Расскажите о них.
- 5. Что такое фация? Приведите примеры.
- 6. Пласт и его элементы. Приведите понятия и рисунки.
- 7. Нарисуйте формы залегания осадочных горных пород.
- 8. Что такое антиклинальная складка? Что такое синклинальная складка? Приведите рисунки. С какими складками могут быть связаны залежи нефти и газа и почему?
- 9. Приведите понятия и рисунки согласного и несогласного залегания слоев горных пород.
- 10. Что такое тектоника? Какие тектонические структуры вы знаете?
- 11. Что представляют собой платформы? Приведите рисунок.
- 12. Тектонические структуры платформ, приведите понятия и приведите рисунки.
- 13. В чем сущность тектоники литосферных плит?

1.4. Основы гидрогеологии и инженерной геологии

Основы гидрогеологии. Цели и задачи гидрогеологических изысканий. Вода в атмосфере, на поверхности Земли и в земной коре. Большой и малый круговорот воды в природе. Происхождение подземных вод, их классификация. Физические свойства подземных вод и методы их определения. Газовый и бактериальный состав подземных

вод. Химический состав подземных вод.

Воды зоны аэрации. Верховодка и условия её образования. Влияние верховодки на обводнение месторождений полезных ископаемых. Грунтовые воды и особенность их залегания. Основные типы грунтовых вод. Элементы грунтовых вод. Области распространения, питания и разгрузки грунтовых вод. Признаки грунтовых вод. Грунтовый бассейн. Грунтовый поток.

Условия залегания артезианских вод. Факторы, обуславливающие напор артезианских вод. Главнейшие элементы артезианских бассейнов. Пьезометрический уровень. Карта гидроизопьез. Трещинные воды и условия их залегания. Водоносность трещиноватых пород. Распространение и значение трещинных воды. Карстовые воды. Условия движения и питания карстовых вод.

Многолетняя мерзлота и её распространение на территории России. Зоны многолетней мерзлоты. Основные типы подземных вод. Надмерзлотные, межмерзлотные и подмерзлотные воды и их особенности. Минеральные воды и их распространение на территории России. Главнейшие типы минеральных вод. Промышленные воды. Их распространение и практическое значение. Термальные воды, их использование.

Условия обводненности месторождений полезных ископаемых Понятие о рудничных (шахтных) водах и задачи рудничной гидрогеологии. Особенности обводненности месторождений полезных ископаемых и основные факторы обводнения. Методы определения притока воды в горные выработки. Использование рудничных вод для водоснабжения и хозяйственно-технических целей. Основные способы борьбы с обводнением месторождений.

Основы динамики подземных вод. Виды передвижения воды в горных породах. Основные законы подземных вод. Линейный закон фильтрации, нелинейный закон фильтрации, неустановившееся движение подземных вод. Понятие о коэффициенте проницаемости, фильтрационном потоке. Способы определения коэффициента фильтрации, направления скорости движения и расхода подземных вод. Типы водозаборов. Определение притока воды к горизонтальным и вертикальным водозаборам Взаимодействие водозаборов. Понятие о радиусе влияния и удельном дебите водозаборов. Понятие о ресурсах и запасах подземных вод.

Основы инженерной геологии. Цели и задачи инженерно - геологических изысканий. Горные породы как объект изучения инженерной геологии. Основные геологогенетические типы горных пород. Понятие о номенклатуре грунтов оснований

сооружений. Классификация грунтов по характеру внутренних связей. Процесс формирования физико-технических свойств осадочных грунтов. Влияние генезиса и структурно -текстурных особенностей на физико-технические свойства грунтов. Основные составные части и фазовое состояние дисперсных грунтов. Минеральный состав. Гранулометрический состав, структура и текстура грунтов. Физикотехнические свойства и их показатели. Физические, водные и механические свойства дисперсных грунтов. Свойства твердых пород.

Методические указания

Подземные воды являются ценнейшим полезным ископаемым на Земле, помимо того, что пресную воду человек использует для питьевых целей, нефть и газ в проницаемых пластах залегают вместе с водой.

При изучении данной темы важно изучить происхождение подземных вод, их классификацию, особенности условий залегания, грунтовых и артезианских вод, так как нефтяные скважины вскрывают эти воды. Основы динамики подземных вод важно знать, чтобы иметь представление о притоках воды в различные скважины.

Литература [1], стр.30-31

Вопросы для самоконтроля.

- 1. Какие породы могут быть отнесены к водопроницаемым и водоупорным?
- 2. В чем различие между грунтовыми и артезианскими водами?
- 3. Нарисуйте схему строения артезианского бассейна и объясните ее.

Раздел 2. Нефтяная геология

2.1. Основы геологии нефти и газа

Нефть и природный газ. Нефть, её элементный состав. Краткая характеристика физических свойств нефти. Углеводородный газ. Компонентный состав и краткая характеристика физических свойств газа. Понятие о конденсате Условия залегания нефти, природного газа и пластовой воды в земной коре. Породы-коллекторы. Литологические типы пород-коллекторов. Поровые пространства в горных породах, их виды, форма, размеры. Коллекторские свойства горных пород. Пористость, трещиноватость. Проницаемость. Карбонатность. Глинистость. Методы изучения коллекторских свойств. Нефтегазонасыщенность пород-коллекторов. Породы-покрышки.

Понятие о природных резервуарах и ловушках. Понятие о залежах и месторождениях нефти и газа. Водонефтяные, газонефтяные контакты. Контуры нефтегазоносности. Классификация залежей и месторождений

Происхождение нефти и газа. Миграция и аккумуляция углеводородов. Разрушение залежей.

Пластовые воды нефтяных и газовых месторождений, их промысловая классификация. Общие сведения о давлении и температуре в нефтяных и газовых пластах. Аномально высокие и аномально низкие пластовые давления. Карты изобар, их назначение.

Понятие о нефтегазоносных провинциях, областях и районах, зонах нефтегазонакопления. Основные нефтегазоносные провинции и области России. Крупнейшие и уникальные нефтяные и нефтегазовые месторождения России

Методические указания.

При бурении нефтяных и газовых скважин и разработке нефтяных и газовых месторождений основополагающими являются знания по нефтяной геологии, а именно, необходимо знать состав и физические свойства нефти и

газа, условия их залегания в земной коре. Всегда остается актуальным вопрос о происхождении нефти. Сегодня ученые пытаются выйти за рамки общепризнанной органической теории происхождения, чтобы совершать открытие новых месторождений. Однако для начала, изучите сущность органической и неорганической теорий происхождения нефти и газа и доказательства в пользу каждой из них.

Порода-коллектор - это порода, способная содержать в себе нефть и газ и отдавать их при перепаде давления. Породами - коллекторами могут быть пески и песчаники, алевриты и алевролиты (терригенные), известняки и доломиты (карбонатные).

Газ, нефть, воды в пределах ловушки распределяются под действием гравитационных сил в зависимости от их плотности. Газ, как наиболее легкий флюид, располагается в верхней

части ловушки, под ним залегает нефть, под нефтью - вода. ВНК- водонефтяной контакт, ГНК- газонефтяной контакт, ГВК- газоводяной контакт. Зарисуйте газонефтяную залежь и подпишите ГНК и ВНК. Рассмотрите и зарисуйте различные типы ловушек и залежей.

Изучите принципы районирования нефтегазоносных территорий. Основным является тектонический принцип. Большая часть нефтегазоносных провинций России находится в пределах платформенных территорий. С ними связаны провинции преимущественного палеозойского и мезозойского нефтегазонакопления. На территории России и сопредельных государств расположены две древние платформы - Русская и Сибирская. На Русской Волго-Уральскую, Тимано-Печорскую, платформе выделяют Прикаспийскую, Прибалтийскую нефтегазоносные провинции. На Сибирской платформе выделяют Лено-Тунгусскую, Лено-Вилюйскую, Енисейско-Анабарскую нефтегазоносные провинции. Выше перечислены провинции древних платформ, а к молодым платформам приурочены Западно-Сибирская и Северо-Кавказская нефтегазоносные провинции. Провинции складчатых территорий приурочены к межгорным впадинам, прогибам в основном альпийской складчатости (Дальневосточная). Провинции переходных территорий соответствуют предгорным прогибам - Предкавказская Предуральская, Предвехоянская нефтегазоносные провинции. В пределах провинций выделяют нефтегазоносные области, внутри областей нефтегазоносные районы, внутри районов - зоны нефтегазонакопления, которые состоят из месторождений.

Литература [1], стр.126-203

Вопросы для самоконтроля

- 1. Что такое нефть, какие химические элементы входят в ее состав?
- 2. Классификация нефти по товарным качествам.
- 3. Что такое плотность, вязкость нефти и чему она равна? Единицы измерения. От каких факторов зависит плотность нефти? Где плотность нефти больше: в пластовых или поверхностных условиях? Поясните почему?
- 4. Какие оптические свойства, тепловые и электрические нефти вы знаете?
- 5. Чему равны объемный и пересчетный коэффициенты, усадка нефти? Почему необходимо их применение в практике. Что такое давление насыщения, газовый фактор и газосодержание?
- 6. Какой химический состав имеют природные углеводородные газы? Расскажите о плотности и вязкости природных углеводородных газов.
- 7. Что представляет собой конденсат? Какой его состав и плотность? Что представляют собой газогидраты?

- 8. Какой химический состав и свойства имеют пластовые воды нефтяных и газовых месторождений?
- 9. Что такое минерализация и как она изменяется с глубиной?
- 10. От чего зависит плотность и вязкость пластовых вод? От чего зависит сжимаемость пластовых вод? Каковы электрические свойства пластовых вод и от чего они зависят?
- 11. Назовите типы вод классификации Сулина, какие из них сопутствуют нефти?
- 12. Какие горные породы называются коллекторами? Назовите литологические типы пород-коллекторов.
- 13. Какие виды пустотного пространства бывают? Охарактеризуйте их.
- 14. Что понимается под пористостью пород-коллекторов? Приведите коэффициенты общей и открытой пористости.
- 15. Что такое проницаемость? Назовите размерность проницаемости. Закон Дарси.
- 16. Что понимается под нефтенасыщенностью (газонасыщенностью)?
- 17. Что называется породами-покрышками? Какие породы ими могут быть?
- 18. Природные резервуары и ловушки нефти и газа. Залежи нефти и газа. Приведите понятия.
- 19. Что называется природными резервуарами? Нарисуйте их типы.
- 20. Что называется ловушкой нефти и газа? Приведите рисунки ловушек различного типа.
- 21. Что такое залежь нефти и газа, месторождение нефти и газа? Зарисуйте газонефтяную залежь, нефтяную залежь, газовую залежь?
- 22. Как в ловушке распределяются газ, нефть, вода?

ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ

Общие указания

После изучения программного материала студент приступает к выполнению контрольной работы. Номер варианта работы соответствует порядковому номеру фамилии студента в журнале (см. приложение 1).

Контрольная работа должна быть выполнена в установленные учебным графиком сроки. Работа выполняется на компьютере, стандартный шрифт №12 (Times New Roman). Перед каждым ответом пишется текст вопроса. Ответы должны быть краткими, но полностью охватывать конкретное существо вопроса. В контрольной работе должны быть даны подробные ответы на вопросы варианта задания. Перепечатывание текста из учебного пособия

и других литературных источников не допускается. Объем рукописной работы не более десяти листов тетради, печатного текста не более семи листов. В конце работы следует указать список использованной литературы, электронные ресурсы. Небрежно выполненная работа или выполненная работа не по своему варианту не оценивается и возвращается студенту. Оформление титульного листа контрольной работы смотри приложение 2.

Вопросы по вариантам

Если у студента возникают вопросы, то необходимо обратиться к преподавателю за консультацией по телефону или по электронной почте.

Таблица 1

№ варианта	Номер вопросов	№ варианта	Номер вопросов
1вариант	1, 31,61,91,121,151,152	16 вариант	16,26,76,106,136,151,138
2 вариант	2,12,62, 92,122, 151,150	17 вариант	17,27, 77,107,137,151,142
3 вариант	3,13,63, 93,123, 111,148	18 вариант	18,28, 78,108,138,122,152
4 вариант	4,14,64, 94,124, 112,150	19 вариант	19,29, 79,109,139,152,150
5 вариант	5,15,65, 95,125, 151,152	20 вариант	20, 30,80,110,140,151,145
6 вариант	6,16,66, 96,126, 131,28	21 вариант	21,31, 80,111,141,151,146
7 вариант	7,17,67, 97,127, 141,125	22 вариант	22,32,80,112,142,150,147
8 вариант	8,18, 68, 98,128, 151,99	23 вариант	23,33, 80,113,143,151,149
9 вариант	9,19,69, 99,129, 151,150	24 вариант	24,34, 80,114,144,151,150
10 вариант	10,20,70,100,130,122,152	25 вариант	25,35, 80,115,145,150,152
11 вариант	11,21,71,101,131,124,150	26 вариант	26,36, 80,116,146,148,115
12 вариант	12,22,72,102,132,123,100	27 вариант	27,37, 80,117,147,119,148
13 вариант	13, 23, 73,103,133,151,152	28 вариант	28,38, 80,118,148,150,152
14 вариант	14, 24,74,104,134,151,148	29 вариант	29,39, 80,119,149,151,150
15 вариант	15, 25,75,105,135,102,152	30 вариант	30,60,90,120,150,151,149

Вопросы для контрольной работы

- 1. Роль геологии в современной жизни человека.
- 2. Роль геологических знаний для открытия нефтяных и газовых месторождений. Приведите примеры.
- 3. Современное состояние нефтяной и газовой промышленности России, перспективы

развития.

- 4. Образование Солнечной системы, ее строение.
- 5. Современные методы изучения космического пространства. Их результаты (кратко).
- 6. Форма, размеры, масса и плотность Земли.
- 7. Гравитационное поле Земли. Гравитационные аномалии. Применение гравитационного поля человеком.
- 8. Магнитное поле Земли. Магнитные аномалии. Применение магнитного поля человеком.
- 9. Теплота Земли. Изменение температуры с глубиной.
- 10. Атмосфера, ее строение и состав. Озоновый слой, полярные сияния. Роль атмосферы для протекания геологических процессов.
- 11. Гидросфера, ее строение. Строение дна Мирового океана. Роль гидросферы для протекания геологических процессов.
- 12. Внутреннее строение Земли. Приведите рисунок с условными обозначениями. Методы изучения внутреннего строения Земли.
- 13. Строение и состав земной коры. Континентальная и океаническая земная кора. Приведите рисунок с условными обозначениями.
- 14. Строение и состав мантии Земли. Приведите рисунок с условными обозначениями.
- 15. Строение и состав ядра Земли. Приведите рисунок с условными обозначениями.
- 16. Гипотеза возникновения земной коры.
- 17. Геологические процессы, их общая характеристика, их результаты.
- 18. Выветривание горных пород, его виды и результаты.
- 19. Геологическая деятельность ветра (разрушительная, транспортирующая и созидательная).
- 20. Геологическая деятельность поверхностных текучих вод (разрушительная, транспортирующая и созидательная).
- 21. Геологическая деятельность подземных вод (разрушительная, транспортирующая и созидательная).
- 22. Геологическая деятельность озер и болот (разрушительная, транспортирующая и созидательная). Понятие о диагенезе.
- 23. Геологическая деятельность ледников (разрушительная, транспортирующая и созидательная).
- 24. Геологическая деятельность морей и океанов (разрушительная, транспортирующая и созидательная).
- 25. Образование рифов. Их роль в образовании залежей нефти и газа.

- 26. Геологическая и техногенная деятельность человека.
- 27. Многолетняя мерзлота, ее строение. Результаты геологической деятельности многолетней мерзлоты. Ее роль в народном хозяйстве.
- 28. Тектонические движения земной коры вертикальные и горизонтальные, их результаты.
- 29. Образование магмы. Магматические процессы, их классификация и результаты.
- 30. Вулканизм. Типы вулканов. Продукты извержения. Тихоокеанский вулканический пояс.
- 31. Характеристика землетрясений, причины их возникновения.
- 32. Метаморфические процессы, их типы и результаты.
- 33. Понятие о минералах, их физические свойства.
- 34. Классификация минералов по химическому составу.
- 35. Характеристика самородного класса минералов.
- 36. Характеристика класса минералов силикатов.
- 37. Характеристика класса минералов сульфидов
- 38. Характеристика класса минералов оксидов.
- 39. Характеристика класса минералов сульфатов.
- 40. Характеристика класса минералов фосфатов.
- 41. Породообразующие минералы.
- 42. Понятие о петрографии, литологии. Классификация горных пород по происхождению.
- 43. Магматические горные породы, их классификация по происхождению и по содержанию оксида кремния, примеры.
- 44. Метаморфические горные породы, условия их происхождения, примеры.
- 45. Осадочные горные породы, их классификация по происхождению, примеры.
- 46. Терригенные и карбонатные обломочные породы, их характеристика, примеры.
- 47. Обломочные осадочные горные породы, их классификация, примеры.
- 48. Хемогенные осадочные горные породы, примеры.
- 49. Органогенные осадочные горные породы. Каустобиолиты. Примеры.
- 50. Структура и текстура интрузивных и эффузивных магматических горных пород.
- 51. Структура и текстура обломочных осадочных горных пород.
- 52. Структура и текстура хемогенных осадочных горных пород.
- 53. Структура и текстура органогенных осадочных горных пород.
- 54. Структура и текстура метаморфических горных пород.
- 55. Полезные ископаемые. Основные типы месторождений полезных ископаемых их примеры.
- 56. Задачи и методы исторической геологии.
- 57. Время в геологии. Относительный и абсолютный возраст горных пород.

- Подразделения геохронологической и стратиграфической шкал.
- 58. Геохронологическая (стратиграфическая) шкала. Принцип ее построения.
- 59. Возраст Земли. Методы определения относительного и абсолютного возраста горных пород.
- 60. Палеонтологический метод определения относительного возраста горных пород.
- 61. Краткая история развития земной коры и образования полезных ископаемых.
- 62. Краткая история развития органического мира на Земле.
- 63. Геоморфология. Происхождение форм рельефа.
- 64. Методы геоморфологических исследований.
- 65. Понятие о стратиграфии. Слой и его элементы. Согласное и несогласное алегание горных пород.
- 66. Угловые несогласия, причины образования, связь с образованием залежей нефти и газа.
- 67. Элементы залегания наклонного слоя, азимут линии простирания, азимут линии падения.
- 68. Понятие об азимуте. Устройство горного компаса. Определение элементов залегания наклонного слоя с помощью горного компаса.
- 69. Формы залегания осадочных горных пород. Приведите рисунки.
- 70. Антиклинальные и синклинальные складки земной коры, их строение и типы. Приведите рисунки.
- 71. Понятие об антиклинальной складке. Приведите рисунки антиклинальной складки на геологической карте и геологическом разрезе. Почему залежи нефти и газа могут быть связаны с антиклинальными складками?
- 72. Складки платформенных областей, их происхождение и характеристика.
- 73. Разрывные нарушения, их виды. Приведите примеры и рисунки.
- 74. Геологическая карта. Литолого-стратиграфическая колонка. Г еологический разрез.
- 75. Понятие о тектонике. Тектонические структуры земной коры платформы, геосинклинали и прогибы.
- 76. Строение платформ. Древние и молодые платформы, примеры. Тектонические структуры платформ. Приведите рисунки.
- 77. Тектоника литосферных плит. Фации, их типы.
- 78. Классификация континентальных отложений по типам.
- 79. Сущность и назначение фациального анализа. Практическое значение учения о фациях.
- 80. Круговорот воды в природе. Строение подземной гидросферы.
- 81. Происхождение подземных вод.
- 82. Газовый и бактериальный состав подземных вод. Химический состав подземных вод.
- 83. Физические свойства подземных вод.

- 84. Воды зоны аэрации. Верховодка и условия её образования. Влияние верховодки на обводнение месторождений полезных ископаемых
- 85. Грунтовые воды и особенность их залегания. Основные типы грунтовых вод. Элементы грунтовых вод. Области распространения, питания и разгрузки грунтовых вод. Признаки грунтовых вод. Грунтовый бассейн.
- 86. Условия залегания артезианских вод. Факторы, обуславливающие напор артезианских вод. Главнейшие элементы артезианских бассейнов. Пьезометрический уровень. Режим напорных вод.
- 87. Трещинные воды и условия их залегания. Водоносность трещиноватых пород. Распространение и значение трещинных вод. Зависимость водообильности трещиноватых пород от условий питания, состава пород, тектоники.
- 88. Карстовые воды. Условия движения и питания карстовых вод.
- 89. Минеральные воды и их распространение на территории России. Главнейшие типы минеральных вод.
- 90. Основные типы подземных вод многолетней мерзлоты их особенности.
- 91. Промышленные воды. Их распространение и практическое значение. Термальные воды, их использование
- 92. Основные законы подземных вод. Линейный закон фильтрации, нелинейный закон фильтрации.
- 93. Понятие о коэффициенте проницаемости, фильтрационном потоке. Способы определения коэффициента фильтрации, направления скорости движения и расхода подземных вод.
- 94. Определение притока воды в артезианскую совершенную скважину.
- 95. Определение притока воды в грунтовый колодец.
- 96. Цели и задачи инженерно-геологических изысканий. Горные породы как объект изучения инженерной геологии. Основные геологогенетические типы горных пород, их физикомеханические свойства.
- 97. Химический состав нефти. Классификация нефти.
- 98. Физические свойства нефти.
- 99. Химический состав и физические свойства природного углеводородного газа. Конденсат, состав свойства.
- 100. Понятие о породах-коллекторах, их литологический состав. Виды пустотного пространства пород-коллекторов. Породы-покрышки, их литологический состав.
- 101. Коллекторские свойства пород-коллекторов-пористость и проницаемость.
- 102. Нефте-, газо-, водонасыщенность пород-коллекторов. Гидрофобные и гидрофильные породы.

- 103. Природные резервуары и их типы. Ловушки нефти и газа, их типы. Приведите рисунки и условные обозначения к ним.
- 104. Понятие о залежах нефти и газа, их классификация по фазовому состоянию и по типу ловушек.
- 105. Условия залегания нефти, газа и воды в ловушках. Строение пластовой сводовой залежи. Пластовые сводовые и массивные залежи. Неорганическое происхождение нефти.
- 106. Миграция, аккумуляция и разрушение залежей нефти и газа.
- 107. Нефть источник загрязнения окружающей природной среды. Мероприятия по охране недр и окружающей среды при бурении нефтяных и газовых скважин и добыче нефти и газа.
- 108. Состав и свойства пластовых вод нефтяных и газовых месторождений. Промысловая классификация вод.
- 109. Общие сведения о давлении и температуре в нефтяных и газовых пластах. Аномально высокие и аномально низкие пластовые давления. Карты изобар.
- 110. Понятие о нефтегазоносных провинциях, областях и районах, зонах нефтегазонакопления.
- 111. Общая характеристика нефтегазоносных провинций России. Их сравнительный анализ по добыче нефти и перспективам развития.
- 112. Крупнейшие месторождения нефти и газа в мире, их запасы. Крупнейшие месторождения нефти и газа России, их запасы.
- 113. Геологическое строение и нефтегазоносность Волго-Уральской нефтегазоносной провинции
- 114. Геологическое строение и нефтегазоносность Западно-Сибирской нефтегазоносной провинции.
- 115. Этапы и стадии геологоразведочных работ на нефть и газ, цели, задачи и методы.
- 116. Характеристика регионального этапа геологоразведочных работ на нефть и газ, цели, задачи и методы.
- 117. Характеристика поисково-оценочного этапа геологоразведочных работ на нефть и газ, цели, задачи и методы.
- 118. Характеристика разведочного этапа геологоразведочных работ на нефть и газ, цели, задачи и методы.
- 119. Доразведка нефтяных и газовых месторождений.
- 120. Промышленная оценка открытых месторождений нефти и газа.
- 121. Методика поисков залежей, приуроченных к антиклинальным складкам.
- 122. Геологические методы поисков месторождений нефти и газа.
- 123. Полевые геофизические методы поисков месторождений нефти и газа, общая

характеристика, их назначение.

- 124. Электроразведка, ее физические основы и решаемые задачи.
- 125. Магниторазведка, ее физические основы и решаемые задачи.
- 126. Гравитационная разведка, ее физические основы и решаемые задачи.
- 127. Сейсморазведка, ее физические основы и решаемые задачи.
- 128. Радиометрия, ее физические основы и решаемые задачи.
- 129. Геохимические методы поисков залежей нефти и газа.
- 130. Классификация скважин по назначению.
- 131. Геологические методы исследования скважин, их назначение.
- 132. Геофизические методы исследования скважин, их назначение.
- 133. Методы изучения технического состояния скважин.
- 134. Краткая характеристика геохимических методов исследования скважин. Геолого-технологические исследования скважин в процессе бурения
- 135. Условия вскрытия продуктивных пластов. Буровые растворы, применяемые для вскрытия продуктивных пластов.
- 136. Принципы построения геолого-геофизических разрезов скважин.
- 137. Геолого-технический наряд. Характеристика геологической части геолого-технического наряда.
- 138. Назначение и построение геологического профиля.
- 139. Назначение и построение структурной карты.
- 140. Назначение и построение карт эффективных нефтенасыщенных толщин.
- 141. Неоднородность продуктивных пластов.
- 142. Категории запасов нефти и газа по степени изученности и обоснованности.
- 143. Классификация запасов нефти и газа по хозяйственному значению. Объемный метод подсчета запасов нефти.
- 144. Опишите источники энергии в пластах и силы, удерживающие нефть в пластах.
- 145. Режимы нефтяных залежей, оценка их эффективности.
- 146. Режимы газовых залежей, оценка их эффективности.
- 147. Характеристика геологического строения (литолого-стратиграфический разрез, тектоническое строение) и нефтегазоносности месторождения местного региона.
- 148. Полезные ископаемые Забайкальского края.
- 149. Докембрийский этап развития земной коры.
- 150. Байкальский этап развития земной коры.
- 151. Каледонский этап развития земной коры.
- 152. Герцинский этап развития земной коры.

Список литературы

Основные источники:

- 1. Использование БД Электронно-библиотечной системы IPRbooks (www/iprbookshop/ru) Структурная геология и геологическое картирование 2014, Ло<u>щи</u>нин В.П., Галянина Н.П., Оренбургский государственный университет.
- 2. Поиски, разведка и геолого-экономическая оценка месторождений полезных ископаемых 2016, Ло<u>щи</u>нин В.П., Пономарева Г.А., Оренбургский государственный университет, ЭБС АСВ.
- 3. Бондарев В.П. Геология. Курс лекций: Учебное пособие.- М.: ФОРУМ: ИНФА М, 2017.-224 с. (Серия «Профессиональное образование»).
- 4. Бондарев В.П. Геология. Лабораторный практикум. Полевая геологическая практика: Учебное пособие для студентов учреждений среднего профессионального образования. М.: ФОРУМ: ИНФА М, 2016. 190 с.
- 5. Гальперин А.М. Геология: учебник для вузов. Часть 4. Инженерная геология / А.М. Гальперин, В.С. Зайцев. М.: Горная книга, МГГУ, 2015.559с.

Дополнительная

- 1. Бубнов, С. Геология Европы / С. Бубнов. М.: Л-М: Геологоразведочная и геодезическая литература, 2012. 470 с.
- 2. Геология атомных сырьевых материалов. М.: Государственное научно- техническое издательство литературы по геологии и охране недр, 2015. 508 с.
- 3. Геология металлических полезных ископаемых / Под редакцией Э.А. Высоцкого. м.: ТетраСистемс, 2014.-336 с.
- 4. Дмитриевский, А.Н.А.Н. Дмитриевский. Избранные труды. В 7 томах. Том 1. Системный подход в геологии. Теоретические и прикладные аспекты / А.Н. Дмитриевский. Л.: Наука. 2013. 456 с.
- 5. Домарев, В.С. Геология урановых месторождений капиталичесих стран / В.С. Домарев. М.: Наука, 2013.- 274 с.
- 6. Киевленко, Е.Я Геология месторождений драгоценных камней / Е.Я. Киевленко, Н.Н. Сенкеевич, А.П. Гаврилов. Л.:Недра, 2014. 279с.

Группа ПР 01-21 ПРМПИ 3/О

№ п/п	Ф.И.О.
1.	Ачаколов Александр Тимофеевич
2.	Буклов Артем Игоревич
3.	Бурлев Иван Владимирович
4.	Варламов Иван Витальевич
5.	Воеводин Константин Алексеевич
6.	Глинский Дмитрий Дмитриевич
7.	Глушков Максим Викторович
8.	Горюшкин Иван Викторович
9.	Довиденко Владлен Юрьевич
10.	Кусургашев Сергей Анатольевич
11.	Мамышев Николай Владимирович
12.	Митькин Сергей Олегович
13.	Немчинов Роман Евгеньевич
14.	Платонов Игорь Геннадьевич
15.	Рудая Майя Викторовна
16.	Самсонов Дмитрий Александрович
17.	Самсонов Роман Александрович
18.	Солодовников Евгений Александрович
19.	Стерленко Дарина Вячеславовна
20.	Теренько Александр Александрович
21.	Чужаков Евгений Игоревич
22.	Шуваев Роман Игоревич
23.	Щербаков Иван Константинович

Филиал государственного бюджетного профессионального образовательного учреждения Республики Хакасия «Черногорский горно-строительный техникум»

ДИСЦИПЛИНА: ВАРИАНТ:	
	КОНТРОЛЬНАЯ РАБОТА
	Выполнил: студент группы ПР-01-22
	Проверил: преподаватель
	Рыжкова Н.И.
	Дата сдачи «»202г.

Абаза, 2023г.